医学信号处理

Biomedical Signal Processing

Typical Biomedical Signal

EEG

  • Dr. Has Berger firstly recorded EEG signal in 1926
  • Clinical EEG
TypeSpectrum RangePhenomenon
Beta13-30HzFrontal and parentally
Aplha8-13HzOccipitally
Theta4-8HzChildren, sleeping Adults
Delta0.5-4HzInfants, sleeping Adults
Spikes3HzEpilepsy-petit mal
  • EEG signal is generated by Electro Neurophysiologic Signal

    • Spike
    • LFP: Local Field Potential
      • sEEG: stero-electroencephalography
    • ECog/iEEG
    • EEG (Non Invasive)
    • ERP
  • Scalp EEG

    • history

      • 1926, Hans Berger-EEG
      • 1933, Adrain verified EEG in Cambridge
      • 1958, Dawson designed EP University of London
      • 1967, Sutton-P300-ERP
    • Classification

      • Spontaneous EEG
      • Evoked Potentials: External Stimulations
      • Event-Related Potentials
    • EEG Lead System: International 10-20 System

      • Bipolar
      • Unipolar
  • EEG

    • EEG Sensor
    • Amplifier
    • Filter
    • A/D
    • Artifacts Rejection
    • EEG
    • ERP (from ERP)
    • Grand Average
    • Data analysis
  • Evoked Potentials

    • VEP(Visual EP)
      • F-VEP
      • P-VEP
  • ERPs: Event-related potential

    • Potential change when voking and revoking stimulations
  • Basic Principle of ERPs Extraction

    • EEG covers ERPs
    • Data Averaging
    • ERP characteristic
      • Constant waveform
      • Constant incubation period
    • The EEG obtained on several trials can be averaged together time-locked to the stimulus to form an event-related potential(ERP)
  • ECG

    • Collecting/Recording
      • History:
        • Augustus D. Waller (1856-1922) recorded the first human “electric potential of the heartbeat” using a capillary electrometer (1887)
        • Willem Eintowen (1860-1927) developed and Improved the string galvanometer(1901); established the theory and application to heart disease; Named PQRST(U) waves; Invented ECG leads
    • Theory of the Electrocardiogram (ECG)
      • The electrical properties of our heat can be measured non-invasively
      • ECG Principle:
        • P wave: Depolarization of the Atria
        • QRS complex: Depolarization of the ventricles
        • T wave: Repolarization of the ventricles
  • EMG

    • The electral source is the muscle membrane potential of about 90 mV.
    • Surface EMG
  • Others

    • Ultrasonic
    • Heart Rate
  • Signal

    • Message, Information, Signal
    • Classification
      • Continuous and discrete

        • Continuous time signal
        • Discrete time signal (Series)
      • Analog and digital

        • Analog: continuous on time and amplitude
        • Digital: discrete on time and amplitude
      • Determinate and random

        • Determinate Signal: $x(t)$ could be expressed in a time function
          • Periodic signal: $x(t)=x(nT+t)$
          • Aperiodic
        • Random Signal: a stochastic signal with whole uncertainty
          • Stationary Stochastic Signal
          • Non Stationary Stochastic Signal
      • Finite energy signal and finite power signal

      • fractal, chaotic signal

      • Classification of signals

        • Signal
          • Deterministic
            • Periodic
              • Sino-soicial
              • Complex
            • Nonperiodic
              • Almost Periodic
              • Transient
          • Stochastic
            • Stationary
              • Ergodic
              • Non-Ergodic
            • Nonstationary
              • Special type
  • Characteristics of Biomedical Signal

    • Weak signal (mv/uV)
      • Biomedical signal measurement is weak signal measurement
      • Measuring Requirements: high sensitivity, high resolution, noise superession, anti-interference
    • Strong Interference
    • Low frequency, thin bandwidth
    • Complicated, random, non stationary
  • Characteristics of Biomedical System

    • Organism
    • Openness
    • Time-Varient
    • Complexity
    • Non linearity
    • Varability

    In a nutshell, Biomedical System is an extremely complicated system

  • Basic mission of Biomedical Signal Processing

    • Motivation

      • Filter useless signal because they contaminate signal of interest
      • Extract signal in a more obvious or useful method
      • Prediction
    • Cited from Mark van Gils, Fall 2011

      • Some objectives of applications that use biosignal processing
        • Information gathering
        • Diagnosis
        • Monitoring
        • Therapy and control
        • Evaluation
      • Example: Notch Filter
      • Problems in biosignal processing
        • Accessibility
        • Variance
        • Inter-relationships and interactions among physiological system
        • Acquisition interference
        • Lack of Gold Standards
  • Fourier Transformation

    • One of the most common analysis techiniques that is used for biological signals isaimed at breaking down the signal into its different spectral (frequency) components

    • Signal Processing Alogrithm == Transformation Operator

    • Orthogonal function

      • inner products equals to 0
      • Orthogonal function set
        • continuous function meet $$\int_a^b\Phi_n(t)\Phi_m(t)dt=\begin{cases} C,&m=n\ 0,&m\ne n\ \end{cases}$$ on interval [a,b]
    • Inner Product

      • $<f(x),g(x)>=\int_a^bf(x)g(x)dx$
    • Fourier Transformation

      TransformTimeSpectrum
      CTFTContinuous, AperiodicContinuous, Aperiodic
      FSContinuous, PeriodicDiscrete, Aperiodic
      DTFTDiscrete, AperiodicContinuous, Periodic
      DFTDiscrete, PeriodicDiscrete, Periodic
      • Fourier Transformation
        • $$\int_{-\infty}^\infty S(t)\cdot e^{-2\pi j \omega t}dt$$
    • Properties of DFT

      • Linearity $$DFT[ax(n)+by(n)]=aX(k)+bY(k)$$
      • Periodical $$x(n)=X(n+N), X(k)=X(k+N)$$
      • Time Reversal $$DFT[x(N-n)]=X(N-k)$$
      • Circular Time Shift $$DFT[x((n-l))_N]=X(k)e^{-j\frac{2\pi kl}{N}}$$
      • Circular Frequency Shift $$DFT[x(n)e^{-j\frac{2\pi nl}{N}}]=X((k-l))_N$$
      • Complex Conjugate $$DFT[x^{*}(n)]=X^*(N-k)$$
      • Circular Convolution $$DFT[x_1(n)\otimes x_2(n)]=X_1(k)X_2(k)$$
      • Multiplication $$DFT[x_1(n)x_2(n)]=X_1(k)\otimes X_2(k)$$
      • Parseval’s Theorem $$\sum_{n=0}^{N-1}x(n)x^*(n)=\cfrac{1}{2\pi}\sum_{n=0}^{N-1}X(k)X^*(k)$$
  • Spectrum Analysis

    • Magnitude Spectrum: $|X(\omega)|$
    • Phase Spectrum: $\theta$
  • Random/Stochastic Process

    • A Stochastic function of time $X(t,\xi)$.
  • Types of Stochastic Process

    • based on time
      • Discrete
      • Continuous
    • based on sample function
      • Deterministic stochastic process
      • Uncertain stochastic process
    • based on distribution function / density function
      • stable, normal, rayleigh, markov, …
  • Random Signal

    • Random signal could only be described within limited accuracy and confidence.
  • Statistics of Random signal

    • Statistical average
    • Distribution
    • Statistical Features
  • Probability Distribution Function

    • 1-D probability distribution: $F_X(x_1;t_1)=P{X(t_1)\le x_1}$
      • probability density function: $f_x(x_1;t_1)=\cfrac{\partial F_X(x_1;t_1)}{\partial x_1}$
    • 2-D probability distribution: $F_X(x_1,x_2;t_1,t_2)=P{X(t_1)\le x_1,X(t_2)\le x_2}$
      • $f_x(x_1,x_2;t_1,t_2)=\cfrac{\partial^2F_X(x_1,x_2;t_1,t_2)}{\partial x_1\partial x_2}$
  • Statistical Features

    • Expectation(Mean; first moment around zero): $m_x(t)=E[X(t)]=\int_{-\infty}^\infty xf_X(x;t)dx$: DC component
    • Mean Square Value(second moment around zero): $\Psi_X(t)=E[X^2(t)]=\int_{-\infty}^\infty x^2f_X(x;t)dx$: Power
    • Variance(second moment around central): $\sigma^2_X(t)=D[X(t)]=E[X^2]=E[(X(t)-m_x(t))^2]$: Ac Power
    • $$\Psi_X(t)=m_X^2(t)+\sigma_X^2(t)$$
    • Correlation Function: $R_X(t_1,t_2)=E[X(t_1)X(t_2)]=\int_{-\infty}^\infty\int_{-\infty}^\infty x_1 x_2 f_X(x_1,x_2;t_1,t_2)dx_1dx_2$
      • When $t_1=t_2$, $\tau=0$, auto-correlation function $R_X(0)=E(X^2)$
    • Covariance function: $C_X(t_1,t_2)=E[(X(t_1)-m_X(t_1))(X(t_2)-m_X(t_2))]$
      • When $\tau=0$, $C_X(0)=\sigma^2(x)$
  • Stationary random signal

    • First order stable process(m=1): mean of the signal not relate to t
    • Second order stable process(m=2; wide sense stationary): mean and mean square value not related to t
  • Ergodic

    • relating to or denoting systems or processes with the property that, given sufficient time, they include or impinge on all points in a given space and can be represented statistically by a reasonably large selection of points.
  • Some typical random process

    • Gaussian/Normal process
      • $f(x)=\cfrac{1}{\sqrt{2\pi}\sigma}\exp^{-\cfrac{(x-a)^2}{2\sigma^2}}$
    • Ideal White Noise
      • $P_\xi(\omega)=\cfrac{n_0}{2} (W/Hz)$
      • $R(\tau)=\cfrac{n_0}{2}\delta(\tau)$
    • Band-limit White Noise
      • $P_\xi=\begin{cases} \cfrac{n_0}{2},&|f|<f_0\ 0, &\text{otherwise} \end{cases}$
      • $R(\tau)=2f_0\cfrac{n_0}{2}\cfrac{\sin(w_0\tau)}{w_0\tau}$
  • Correlation

    • Similarity
    • Correlation coefficient: Pearson correlation coeffient
      • $r(X,y)=\cfrac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$
  • Linearity

    • $f(ax+by)=af(x)+bf(y)$
  • Nonlinear models

    • linear models are linear in the parameters which have to be estimated
  • Linear Correlation

    • Synchronism/Similarity/In-phase/Linear Relationship
    • $r_{xy}(m)=\sum_{n=-\infty}^\infty x(n)y(n+m)$
    • $r_{xy}(m)=x(n)\cdot y(n)$
    • $r_{xy}(m)=r_{yx}(-m)$
0%